Conservation laws and prediction methods for stress concentration fields
نویسندگان
چکیده
منابع مشابه
Divergence-Measure Fields and Hyperbolic Conservation Laws
We analyze a class of L∞ vector fields, called divergence-measure fields. We establish the Gauss-Green formula, the normal traces over subsets of Lipschitz boundaries, and the product rule for this class of L∞ fields. Then we apply this theory to analyze L∞ entropy solutions of initial-boundary-value problems for hyperbolic conservation laws and to study the ways in which the solutions assume t...
متن کاملMultirate Timestepping Methods for Hyperbolic Conservation Laws
This paper constructs multirate time discretizations for hyperbolic conservation laws that allow different time-steps to be used in different parts of the spatial domain. The discretization is second order accurate in time and preserves the conservation and stability properties under local CFL conditions. Multirate timestepping avoids the necessity to take small global time-steps (restricted by...
متن کاملMultidimensional Upwind Methods for Hyperbolic Conservation Laws
We present a class of second-order conservative finite difference algorithms for solving numerically time-dependent problems for hyperbolic conservation laws in several space variables. These methods are upwind and multidimensional, in that the numerical fluxes are obtained by solving the characteristic form of the full multidimensional equations at the zone edge, and that all fluxes are evalua...
متن کاملNumerical Methods for Hyperbolic Conservation Laws
2.1 Examples of conservative schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 The Godunov Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 The Lax-Friedrichs Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3 The local Lax-Friedrichs Scheme . . . . . . . ....
متن کاملComputational Methods for Hyperbolic Conservation Laws
where u : R × R → R is a vector of conserved variables (or state variables). For fluid dynamics, u is the vector of mass, momentum and energy denisties so that ∫ b a uj(x, t) dx is the total quantity of the j state variable in the interval at time t. Because these variables are conserved, ∫∞ −∞ uj(x, t) dx should be constant in t. The function f : R m → R is the flux function, which gives the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mechanica
سال: 2011
ISSN: 0001-5970,1619-6937
DOI: 10.1007/s00707-010-0425-3